up
next previous
Nodo Raíz: 1.9 Representaciones Gráficas
Siguiente: 1.9.4 Gráficos para variables cuantitativas
Previo: 1.9 Representaciones Gráficas

1.9.2 Gráficos para variables cualitativas

Los gráficos más usuales para representar variables de tipo nominal son los siguientes:

Diagramas de barras:
Siguiendo la figura 1.1, representamos en el eje de ordenadas las modalidades y en abscisas las frecuencias absolutas o bien, las frecuencias relativas. Si, mediante el gráfico, se intenta comparar varias poblaciones entre sí, existen otras modalidades, como las mostradas en la figura 1.2. Cuando los tamaños de las dos poblaciones son diferentes, es conveniente utilizar las frecuencias relativas, ya que en otro caso podrían resultar engañosas.


  
Figura: Diagrama de barras para una variable cualitativa.
\includegraphics[angle=0, width=0.5\textwidth]{fig01-01.eps}


  
Figura: Diagramas de barras para comparar una variable cualitativa en diferentes poblaciones. Se ha de tener en cuenta que la altura de cada barra es proporcional al número de observaciones (frecuencias relativas).
\includegraphics[angle=-90, width=0.5\textwidth]{fig01-02.eps}

Diagramas de sectores
(también llamados tartas). Se divide un círculo en tantas porciones como clases existan, de modo que a cada clase le corresponde un arco de círculo proporcional a su frecuencia absoluta o relativa (figura 1.3).


  
Figura: Diagrama de sectores.
\includegraphics[angle=-90, width=0.6\textwidth]{fig01-03.epsi}

El arco de cada porción se calcula usando la regla de tres:

\begin{eqnarray}\html{eqn1}n & \longrightarrow & 360^{\circ} \nonumber
\\
n_i & \longrightarrow &x_i = \frac{360 \cdot n_i}{n} \nonumber
\end{eqnarray}


Como en la situación anterior, puede interesar comparar dos poblaciones. En este caso también es aconsejable el uso de las frecuencias relativas (porcentajes) de ambas sobre gráficos como los anteriores. Otra posibilidad es comparar las 2 poblaciones usando para cada una de ellas un diagrama semicircular, al igual que en la figura 1.4. Sean $n_1 \leq n_2$ los tamaños respectivos de las 2 poblaciones. La población más pequeña se representa con un semicírculo de radio r1y la mayor con otro de radio r2. La relación existente entre los radios, es la que se obtiene de suponer que la relación entre las areas de las circunferencias es igual a la de los tamaños de las poblaciones respectivas, es decir:


\begin{displaymath}\frac{r_2^2}{r_1^2} = \frac{n_2}{n_1} \Longleftrightarrow
r_2 = r_1 \cdot \sqrt{\frac{n_2}{n_1}}
\end{displaymath}


  
Figura: Diagrama de sectores para comparar dos poblaciones
\includegraphics[angle=-90, width=0.6\textwidth]{fig01-04.epsi}

Pictogramas
Expresan con dibujos alusivo al tema de estudio las frecuencias de las modalidades de la variable. Estos gráficos se hacen representado a diferentes escalas un mismo dibujo, como vemos en la figura 1.5.


  
Figura: Pictograma. Las áreas son proporcionales a las frecuencias.
\includegraphics[angle=0, width=0.5\textwidth]{fig01-05.eps}

El escalamiento de los dibujos debe ser tal que el área1.1 de cada uno de ellos sea proporcional a la frecuencia de la modalidad que representa. Este tipo de gráficos suele usarse en los medios de comunicación, para que sean comprendidos por el público no especializado, sin que sea necesaria una explicación compleja.


next up previous
Nodo Raíz: 1.9 Representaciones Gráficas
Siguiente: 1.9.4 Gráficos para variables cuantitativas
Previo: 1.9 Representaciones Gráficas

Éste texto es la versión electrónica del manual de la Universidad de Málaga:
Bioéstadística: Métodos y Aplicaciones
U.D. Bioestadística. Facultad de Medicina. Universidad de Málaga.
ISBN: 847496-653-1
Bioestadística: Apuntes en vídeo